Tropical Cyclone Track Forecast Characteristics in the NOAA/ESRL GEFS Reforecast Dataset

Thomas Galarneau
Regional Climate Section, NCAR Earth System Laboratory, Boulder, CO

Tom Hamill
Physical Sciences Division, NOAA/Earth System Laboratory, Boulder, CO

Gary Bates
CIRES, University of Colorado, Boulder, CO

HFIP Awards First Year Review 2012
10 July 2013
Goals of HFIP Proposal for Year 1

• Generate TC tracks from GEFS reforecast dataset (1985–2010)
• Determine TC track forecast characteristics for North Atlantic basin
• Investigate using TC track forecasts statistics from reforecast dataset for bias-correction of real-time forecasts
• Examine individual cases to improve understanding of how GEFS reforecast model behaves
Overview of Year 1

• Generation of GEFS reforecast dataset completed in Jun 2012
• Generation of TC track forecast dataset completed in Jul 2012/updated in Feb 2013
• Funded work on proposal began in mid Nov 2012
• Analysis of North Atlantic TC track forecast characteristics (Nov 2012-present)
• Overview paper accepted to *BAMS* (Hamill et al., 2013, in press)
Presentation Goals

• What are “reforecasts”?
• Details and availability of data
• TC track forecast characteristics in North Atlantic basin (1985–2010)
 • Case study of Hurricane Earl (2010)
 – Illustrative case of slow/early recurvature (characteristic of western/central North Atlantic)
 – Interacting TCs
 • Case study of Hurricane Rita (2005)
 – Illustrative case of left-of-track error (characteristic of western Gulf of Mexico)
 – Use of “regional reforecast” with ARW model
• Final comments and plans
What are “reforecasts”?

• Numerical simulations of the past weather (or climate) using the same forecast model and assimilation system that (ideally) is used operationally

• Long time series of forecasts produces a large training dataset for statistical post-processing of model forecasts of relatively rare events (such as TCs)
NOAA ESRL’s GEFS Reforecast v2

- Uses the February 2012 GEFS (v9.0.1) operational configuration
- 11-member ensemble: 1 control + 10 perturbed
- Reforecasts run once-daily at 00Z from 1 December 1984–present
- Control member initial conditions from NCEP Climate Forecast System Reanalysis (CFSR; Saha et al. 2010); perturbations using ensemble transform with rescaling
- Initial conditions from hybrid EnKF/3D-Var after 22 May 2012
- Horizontal resolution T254L42 (~0.50°) to day 8; T190L42 (~0.75°) to day 16
- Fast data archive at ESRL of 98 variables available at 1.0° resolution (28 of which stored at native ~0.5° resolution during week 1) [http://esrl.noaa.gov/psd/forecasts/reforecast2/]
- Full archive at DOE/Lawrence Berkeley Lab, where data set was created under DOE grant [http://portal.nersc.gov/project/refcst/v2/]
- TC tracks generated by Mike Fiorino (NOAA/ESRL/GSD) using Marchok tracker
GEFS Reforecast North Atlantic TC
Track Error Statistics by ½ Decade

1985–2010
1985–1989
1990–1994
1995–1999
2000–2004
2005–2010

½ to 1 day decrease in error
from 1985–89 to 2005–10
GEFS Reforecast North Atlantic TC
Track Error and Bias

Mean Absolute Track Error

Track Bias

- GEFS reforecast track bias suggests:
- Slow error at all times
- Left-of-track error before 96-h
- Right-of-track error after 96-h
GEFS Reforecast TC Track “Bias”

- Note large degree of scatter despite seemingly “physical” track bias
Geographical Characteristics of TC Track Forecasts

• For each lead time, identify forecast positions of TCs (1985–2010) within a 20°×20° latitude-longitude box centered on a pre-determined set of grid points
 – 10–50°N and 100–20°W every 10°

• Determine whether forecasted TC is in pre- or post-recurvature stage
 – Pre-recurvature TC has westward motion
 – Post-recurvature TC has eastward motion

• Compute MAE, bias, sample size for each location
Recall that recurvature stage is defined for the forecasted TC.
Recall that recurvature stage is defined for the forecasted TC.
Recall that recurvature stage is defined for the forecasted TC.
Recall that recurvature stage is defined for the **forecasted TC**.
Recall that recurvature stage is defined for the **forecasted TC**
Recall that recurvature stage is defined for the forecasted TC.
Recall that recurvature stage is defined for the forecasted TC
• Negative height errors in midlatitudes and positive height errors in tropics is consistent with weaker easterly subtropical flow by 72 h.

• Weaker easterly steering flow likely contributes to slow error for pre-recurvature systems.
- Enhanced troughing over eastern North America consistent with early recurvature.
- Enhanced troughing in Gulf of Alaska suggests slower eastward progression of transients; related to L.O.T. error in western Gulf?
Western G.O.M. Late-Recurvature TC Composite Analysis and Case Study

- Left-of-track errors are characteristic of TC track forecasts in the western Gulf of Mexico
- TC-relative composites highlight contributions from synoptic-scale flow forecast errors
- Case study analysis of TC Rita (2005) forecast initialized at 00Z/22 Sept shows complexity of vortex-environment interaction
Western G.O.M. 72-h TC Track Forecasts

Forecast TC Tracks with 72-h Forecast Position in Green Box

- Distribution of across-track error skewed to left-of-track
TC-relative composite for western G.O.M. TC forecasts shows negative (positive) height errors south (north) of the TC.

Height error configuration consistent with anomalous easterly steering flow – a contributor to left-of-track error.
G.O.M. Case Study: TC Rita (2005)

- Example of recurving TC over western Gulf of Mexico
- Explore factors contributing to TC track forecast errors
DT pressure (hPa), DT–850 hPa vertical wind shear (knots), and 925–850 hPa layer-mean vorticity (×10^−5 s^−1)

- Anticyclonic wave breaking (enhanced by Ophelia) drove upper-level PV streamer into subtropics
- Pre-Rita disturbance interacted with trough and developed
- As Rita developed, upper-level trough fractured and weakened – reduced vertical wind shear

Data: GFS analysis
DT Analysis and IR Imagery: 00Z/22 Sept 2005

Data: GFS analysis

Source: NCAR case selection archive
DT Analysis and IR Imagery: 00Z/24 Sept 2005

Source: NCAR case selection archive

Data: GFS analysis
TC Rita Best Track and Official Forecast (issued 03Z/22 Sept 2005)

TC Rita Observed Track and Intensity

TC Rita Intensity

TC Rita Observed Track and Intensity

00Z/26

00Z/24

00Z/22

00Z/20

00Z/18

0000 UTC positions

1200 UTC positions

Sea-Level Pressure (hPa)

Wind Speed (knots)

SLP

wind speed
Operational Track Forecast Guidance: Initialized 0000 UTC 22 Sept 2005

Early-Cycle Track Guidance (i00Z/22)

NCEP GFS Ensemble Track Guidance (i00Z/22)

Source: J. Vigh (http://www.ral.ucar.edu/hurricanes/)
Reforecast Track Forecast Guidance: Initialized 0000 UTC 22 Sept 2005

- Global reforecast ensemble is consistent with NHC forecast; indicating potential impact on Houston
- Significant left-of-track error and intensity was underestimated
Use of “Regional Reforecasts”

- AHW regional ensemble simulation of Rita using global reforecast data as IC/BCs
- Do not get false skill from using analysis data as IC/BCs
- Will examine factors that influenced forecast track errors
- Might information from explicit nest help improve global forecast?

AHW 50-h forecast verifying at 02Z/24 September 2005 (Control member)
Regional Model Ensemble Configuration

- Use Advanced Hurricane WRF (AHW), 2011 HFIP retrospective configuration (Davis et al. 2008, 2010)
- Initial and 3-hourly boundary conditions from 11-member GEFS reforecast dataset (full grids from DOE)
- Generated 11-member AHW ensemble 72-h forecast
- Initialized at 00Z/22 Sept 2005 – threat for Houston, Texas

Horizontal grid spacing: 36, 12, 4 km (two-way nests)
Vertical levels: 36, 36, 36
Time steps: 180, 60, 20
IC and BC: 11-member GEFS reforecast
Cumulus: Tiedtke, Tiedtke, explicit
PBL: YSU
Microphysics: WRF single-moment 6-class
Land surface: Noah
Turbulence: 2D Smagorinsky
Shortwave radiation: Goddard
Longwave radiation: RRTM
Diffusion: Second-order diffusion
Scalar advection: Positive definite

Figure by R. Torn
AHW Reforecast Ensemble Results

a) TC Rita (2005) 72-h GFS Ensemble Reforecast

b) TC Rita (2005) 72-h AHW Ensemble Reforecast

- Rita vortex intensified in AHW regional reforecast despite terrible initial vortex
- Similar left-of-track error in AHW; suggests large-scale control on TC motion
10-m wind speed (m/s)
10-m wind (barbs in knots)
50-h AHW Forecast
Verifying 02Z/24 Sep '05
Ensemble Analysis: 500 hPa Z

24-h AHW Forecast (36-km domain) verifying 0000 UTC 23 Sep 2005

500 hPa Z difference (right minus left; shaded in m), right mean (magenta every 60 m), and left mean (black every 60 m)
Ensemble Analysis: 500 hPa Z

48-h AHW Forecast (36-km domain) verifying 0000 UTC 24 Sep 2005

500 hPa Z difference (right minus left; shaded in m), right mean (magenta every 60 m), and left mean (black every 60 m)
Steering Flow Definition

• The environment wind (v_{env}) is the residual wind that results from the removal of local winds associated with the TC vortex
 – Remove all ζ and δ within a radius, r

• The steering flow is the spatially averaged v_{env} that matches the TC motion, and so is a function of v_{env}
Steering Flow Computation

• Compute an area-average v_{env} every 50 hPa in the 850–200 hPa layer using eight different radii ranging from 1°–8° from the TC center

• Compute the pressure-weighted vertical average v_{env} for layers of increasing depth
 – shallowest layer of 850–800 hPa
 – deepest layer of 850–200 hPa

• Select the steering flow depth and radius combination that best matches TC motion
 – minimize steering layer residual error
Steering Flow Analysis

- Steering flow analysis suggests that forecasted TCs with more westward component to motion responded to a shallower steering layer depth.
- Will now diagnose motion differences for two ensemble members.
Methodology: Diagnosing Forecast Errors in Tropical Cyclone Motion

- Method for computing steering layer flow and diagnosing TC motion errors in any NWP model
- Allows quantification of the intersection between TC structure and position errors

\[
V_{model} - V_{obs} = \frac{1}{p_b - p_{LM}} \int_{P_{LM}}^{P_b} (\dot{\psi}_{m} - \dot{\psi}_{o}) dp + \frac{1}{p_b - p_{LM}} \int_{P_{LM}}^{P_b} (\dot{\psi}_{m} - \dot{\psi}_{o}) dp \\
+ \frac{1}{P_{LM} - P_{LM}} \left[\int_{P_{LM}}^{P_b} \left(\frac{P_{LM} - P_{LM}}{P_b - P_{LM}} \right) \dot{\psi}_{m} dp + \int_{P_{LM}}^{P_b} \dot{\psi}_{m} dp \right] + \text{residual term}
\]

Motion error = Environment wind error
+ near-storm vorticity asymmetry error
+ steering depth error
+ residual error

Error attributed to persistent eastward environment wind error; other terms are large at individual times

Ref: Galarneau and Davis (2013), MWR
Diagnose TC Motion Differences in Ensemble Members: Control vs. P06

Motion Error Diagnostic: 24-h AHW forecast v00Z/23

- Southward V_{env} contribution is consistent with slower progression of midlatitude flow pattern for late-recurving members

- Southwestward steering depth contribution is consistent with shallower steering layer for late-recurving members

Motion error = Environment wind error + near-storm vorticity asymmetry error + steering depth error + residual error

"Error" = Control minus P06
Environment Wind (vortex removed)

Axisymmetric Tangential Wind

24-h Forecast verifying at 00Z/23 Sept 2005
Environment Wind and Vortex Structure

- Subtle differences in vortex structure may contribute to differences in steering layer depth.
- Relatively small differences in steering layer depth can contribute to large TC motion differences in vertically sheared environment flow.

24-h Forecast verifying at 00Z/23 Sept 2005
Final Comments

• 2nd generation GEFS reforecast ensemble data (gridded fields and TC tracks) are now available

• Analysis of North Atlantic TC track forecasts suggest:
 – slow and right-of-track error for pre-recurvature over much of North Atlantic basin
 – slow for post-recurvature everywhere
 – left-of-track error for Gulf of Mexico
Final Comments

• Western G.O.M. TC-relative composite analysis
 – Analysis of 72-h track forecasts show left-of-track error on average
 – Left-of-track error associated with easterly environment wind error in conjunction with positive (negative) height errors north (south) of the TC

• Regional reforecast for TC Rita (2005):
 – Suggests sensitivity of track to phase speed of midlatitude transients
 – Additional contribution to TC track error from vertical extent of steering depth and vortex structure
Proposed Milestones for Remainder of Year 1 and Year 2

• Fine-tune TC track forecast statistics to implement real-time bias-corrected TC track forecasts
• Continue to investigate individual cases to improve understanding of how GEFS reforecast model behaves
 – Link persistent synoptic-scale flow errors to model physical processes
• Extend TC track forecast analysis to other basins
• Extend analysis to include other TC-related forecast products
 – TC intensity
 – Precipitation products: near vortex rainfall and predecessor rain event forecasts
Extra slides
500 hPa Z Anomaly Correlation
(from deterministic control member)

Lines w/o filled colors for second–generation reforecast (2012, T254)

Perhaps a 1.5-2.5 day improvement.

Source: Figure 1 from Hamill et al. (2013; BAMS “in press”)
GEFS Forecast Skill: MJO and Blocking Examples

Forecast Skill for MJO Phase

Forecast Skill for North Atlantic Blocking

- Correlation computed following Lin et al. (2008)
- 1985-1989
- 1990-1994
- 1995-1999
- 2000-2004
- 2005-2010

Decreased skill in 1985–1989 (both) and 1990–1994 (MJO) periods

Source: Tom Hamill
Western North Atlantic Early-Recurvature Example: TC Earl (2010)

• Example of TC track forecast plagued by “early recurvature” problem
• Highlights rich complexity on the synoptic and subsynoptic scale that contributes to case-to-case variability
• Draws attention to “interacting TCs” problem
• Illustrates how the track forecast of a precursor TC (Danielle) potentially impacts the forecast of a subsequent TC (Earl)
Ensemble Analysis of TC Earl (2010)

TC Earl Observed Track and Intensity

TC Earl Intensity

wind speed

SLP

00Z/24

00Z/26

00Z/28

00Z/30

00Z/1

00Z/3

00Z/5

0000 UTC positions

1200 UTC positions

Best Track for TC EEARL
Dynamic tropopause (DT) pressure (hPa; shaded),
850–DT vertical wind shear (knots; barbs),
925–850 hPa layer-average relative vorticity ($\times10^{-5}$ s$^{-1}$; contours)
Time-Lag Ensemble

- Select three (3) farthest left and right TC tracks from each initialization time to generate time-lagged ensemble of two groups consisting of nine (9) members each
- Examine differences between left (late recurvature) and right (early recurvature) groups to determine factors that contributed to recurvature in the GEFS reforecast ensemble
700 hPa height (m)
Late recurve (n=9; black)
Early recurve (n=9; magenta)
Late minus early (shaded)

- TC Danielle moved northeastward slightly faster in late recurvature ensemble composite
- Increased 700 hPa ridging north of TC Earl influenced more westward track
200 hPa height (m)
Late recurve (n=9; black)
Early recurve (n=9; magenta)
Late minus early (shaded)

- More amplified pattern and enhanced southwesterly jet over western North Atlantic at 200 hPa in late recurvature composite
- Core of 200 hPa trough extends farther southwestward
- Role of Danielle’s outflow?
Final Comments: TC Earl (2010)

• Ensemble analysis for TC Earl (2010) over western North Atlantic:
 – shows characteristic slow and right-of-track error for pre-recurvature stage
 – suggests that forecast recurvature is influenced by structure of subtropical ridge north of Earl
 – westward extent of subtropical ridge influenced by western North Atlantic trough and forward speed of Danielle (interacting TCs problem)
Maximum reflectivity (dBZ)
50-h AHW Forecast
Verifying 02Z/24 Sep '05