Aircraft Doppler Versus Flight Level Data Impact Study using FY13 Operational HWRF with vortex initialization and One-Way Hybrid Data Assimilation

Vijay Tallapragada, Mingjing Tong, Emily Liu, Banglin Zhang, Weiguo Wang and Chanh Kieu
HWRF Team, NCEP/EMC

Results from 2008-2012 hurricane seasons
HFIP Telecon, Jan 22, 2014
<table>
<thead>
<tr>
<th>Year</th>
<th>Storm#</th>
<th>Name</th>
<th>HDOB</th>
<th>TDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>2</td>
<td>Bertha</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Cristobal</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Dolly</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Edouard</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Fay</td>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Gustav</td>
<td>29</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Hanna</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Ike</td>
<td>31</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Kyle</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Omar</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Paloma</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>11</td>
<td>209</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Storm#</th>
<th>Name</th>
<th>HDOB</th>
<th>TDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>3</td>
<td>Bill</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Danny</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Erika</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Ida</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>4</td>
<td>58</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Storm#</th>
<th>Name</th>
<th>HDOB</th>
<th>TDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>7</td>
<td>Earl</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Fiona</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Igor</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Karl</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Matthew</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>5</td>
<td>68</td>
<td>12</td>
</tr>
</tbody>
</table>

Total number of storms: 39
HDOB (FL+SFMR): 555
TDR: 84
Data Assimilation Methodology

• **HWRF GSI Hybrid variation-ensemble data assimilation using GFS EnKF ensemble forecasts:**
 – 80 GFS ensemble members at T254L64 with 75%/80% weight given to ensemble B on outer/ghost domain
 – Horizontal localization: Outer domain (27km resolution) ~ 1546km; Ghost domain (3km resolution) ~ 387 km
 – Vertical localization: Outer domain: 1.2 in \(\ln(p/p_{ob}) \); Ghost domain (e-folding scale): 10 vertical model levels for weak storms and 20 vertical model levels for strong storms (equal or greater than category 1)
 – First guess: Outer domain: GDAS forecast after relocation; Ghost: GDAS forecast (TC environment) + modified GDAS/HWRF vortex
Observational Data sets

- **For control experiment (HWCT) Outer Domain Only, No Inner-Core DA:**
 - prepbufr data: Radiosondes, Dropsondes, Aircraft reports, Surface ship and buoy observations, Surface observations over land, Pibal winds, Wind profilers, VAD wind, WindSat, ASCAT scatterometer winds, GPS-derived integrated precipitable water
 - Dropsonde wind within radius=$\max(111\text{km}, 3\times \text{RMW})$ are flagged (not assimilated).

- **For TDR DA experiment (HWDR):**
 - HWCT + TDR in bufr format or superobs if bufr data are not available

- **For Recon DA experiment (HWRC):**
 - HWCT + HDOBS in bufr format

- **For TDR+RECON experiment (HWRA):**
 - All above
HWRF Data assimilation System (HDAS)

Conventional data

- TDR
- bufr data (HWDR)
- HDOBS bufr data (HWRC)
- TDR+HDOBS (HWAR)

- HWRF one-way hybrid system
 - HWRF forecast
 - Vortex initialization
 - GSI hybrid Ens/Varghost
 - analysis on d01, d02, d03
 - HWRF forecast

- Global hybrid EnKF/Var system
 - member 1 forecast
 - member 2 forecast
 - member K forecast
 - high res forecast
 - GSI hybrid Ens/Var
 - high res analysis
 - EnKF member update
 - Recenter analysis
 - ensemble
 - member 1 analysis
 - member 2 analysis
 - member K analysis
TDR data impact (all cycles)

HWCT: Control
HWDR: TDR DA
TDR data impact (TDR cycles only)

HWCT: Control
HWDR: TDR DA Only
TDR data impact

Category: TS
HWCT: Control
HWDR: TDR DA

Category: H1-2

Category: MH
TS: isaac 2012082700
H2: Ike 2008091100
MH: earl 2010083012

HWCT: Control
HWDR: TDR DA
rms innovations for independent Flight level and SFMR observations
isaac 2012082700, ike 2008091100, earl 2010083012; TDR cases (HWDR)
S-N cross section

Color shade: first guess u

Black contour: temperature increment

Green contour: u increment

Make storm more northward tilted

Weakening the storm
HWCT: Control
HWDR: TDR DA
HWCT: Control

HWDR: TDR DA
HDOB data impact (all cycles)

HWCT: Control
HWRC: Recon Data, All Cycles
HDOB data impact (cycles with HDOB data available)

HWCT: Control
HWRC: Recon Data Only
HDOB+TDR data impact (cycles with TDR data available)

HWCT: Control
HWRC: Recon Data (HDOB)
HWAR: TDR+HDOB
Five Year Aircraft TDR versus HDOB (Flight level and SFMR) Data Impact Study

Summary and remarks:

• **HWDR:** Inner-core data assimilation with TDR data improves or has neutral impact on track forecast. Experiments with TDR DA showed improved intensity forecasts from 24 hours forecast lead time. Intensity bias indicates short-term forecast spin-down.

• The assimilation of TDR almost consistently improves track and intensity forecast for tropical storms and significantly reduces spin-up and positive bias that happen when only vortex initialization is used to initialize TC vortex. The initial forecast spin-down mainly found in strong storms, especially major hurricanes. In most of the cases, TDR data assimilation helped reduce over-intensification of weak storms and minimal hurricanes, adding value to the vortex initialization.

• **HWRC:** The assimilation of HDOB data improves or has neutral impact on track forecasts. However, these experiments showed significant short-term intensity spin-down.

• **HWRA:** For the storms with TDR data available, the assimilation of HDOB data also improves intensity forecast beyond 24 hours forecast lead time. However, the initial spin-down is still prominent on these experiments.
2013 TDR+Dropsonde experiments

When surface pressure data within vortex area are flagged (not assimilated) in FY13 HWRF, the corresponding dropsonde temperature and moisture data are also not assimilated. When including all dropsonde thermodynamic profiles (HTDP), both track and intensity forecast can be improved.
No TDR

Impact of HWRF forecasts with TDR DA on NHC Operational Forecasts

NHC Forecast Discussion on October 4, 5 PM:

- **THE 12Z HWRF RUN SHOWED CONSIDERABLY LESS INTENSIFICATION WITH KAREN COMPARED TO PREVIOUS RUNS AFTER ASSIMILATING DATA FROM THE FROM THE NOAA P-3 TAIL DOPPLER RADAR. THIS MARKS THE FIRST TIME DOPPLER RADAR DATA HAVE BEEN ASSIMILATED INTO AN OPERATIONAL HURRICANE MODEL IN REAL TIME.**

 -- Forecaster Brennan

Real-time assimilation of NOAA P3 TDR DA for operational HWRF – A First in many years of flying.

- Fix issues related to transmission of TDR data to NCO (storm id mismatch etc.)
- Conduct experiments to maximize the effective utilization of inner core data
Plans for FY14 Data Assimilation Upgrades

- **Inner-core**: always turn on data assimilation on ghost domain – dropsonde data as part of conventional data are always assimilated

- **Outer domain**: Add calibrated radiances (AMSU-A, ATMS, MHS, AIRS, IASI, HIRS4, GOES Sounders), GPSRO bending angles and satellite derived winds (IR/VIS cloud drift winds, water vapor winds) in outer domain analysis

- **Experimental Research**: Assimilation of TDR, Flight level and SFMR data
 - improving background error covariance (test higher resolution HWRF ensemble)
 - test hourly FGAT (provide more accurate first guess fields, especially for fast moving and developing storms)
 - test data thinning strategy
 - observation error tuning
 - test different way of using vortex initialization