Validation of rapid intensification forecasts from deterministic regional dynamical models
(... and some ensemble forecast products, time permitting)

Jonathan Moskaitis
Naval Research Laboratory, Monterey, CA

HFIP teleconference
03/08/2017
Validation of rapid intensification for 2015 & 2016 real-time dynamical model forecasts of Atlantic, Eastern Pacific, Central Pacific, and Western Pacific TCs

- **CTCX**: NRL demo COAMPS-TC with GFS ICs/BCs
- **COTC**: Operational COAMPS-TC with NAVGEM ICs/BCs
- **HWRF**: Operational, with GFS ICs/BCs
- **GFDL**: Operational, with GFS ICs/BCs
- **GFDN**: Operational, with NAVGEM ICs/BCs

Rapid Intensification (RI): 24 h intensity change ≥ 30 kt

- RI threshold is ~ 95th percentile of observed 24 h intensity change distribution in the Atlantic and Eastern Pacific (lower percentile in Western Pacific). It is by definition a rare event.

- RI is a “yes/no” forecast with a “yes/no” observed predictand. Validation is based on the 2 x 2 contingency table and related metrics.
2 x 2 Contingency Table & Metrics

<table>
<thead>
<tr>
<th>RI forecast</th>
<th>RI observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>HIT</td>
</tr>
<tr>
<td>No</td>
<td>MISS</td>
</tr>
</tbody>
</table>

Success rate (high is good)

$$SR = \frac{HIT}{HIT + FA}$$

Probability RI is observed, given that RI is forecast

Note: False alarm ratio = 1 – Success rate

Prob. of Detection (high is good)

$$POD = \frac{HIT}{HIT + MISS}$$

Probability RI is forecast, given that RI is observed

Threat Score (high is good)

$$TS = \frac{HIT}{HIT + MISS + FA}$$

Measure of accuracy with no “credit” for CRs

Note: Misses and false alarms considered equally bad

Bias Ratio (1 is ideal)

$$BR = \frac{(HIT + FA)}{(HIT + MISS)}$$

Rate RI is forecast / Rate RI is observed
RI Validation: Methodology

2 x 2 Contingency Table & Metrics

<table>
<thead>
<tr>
<th>RI observed</th>
<th>RI forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>HIT</td>
<td>MISS</td>
</tr>
<tr>
<td>FA</td>
<td>CR</td>
</tr>
</tbody>
</table>

Success rate (high is good)
SR = HIT / (HIT + FA)

Prob. of Detection (high is good)
POD = HIT / (HIT + MISS)

Threat Score (high is good)
TS = HIT / (HIT + MISS + FA)

Bias Ratio (1 is ideal)
BR = (HIT + FA) / (HIT + MISS)

Rapid Intensification: 24 h change in intensity >= 30 kt
Plot adapted from Roebber 2009
RI Validation: Methodology

2 x 2 Contingency Table & Metrics

<table>
<thead>
<tr>
<th>RI forecast</th>
<th>RI observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>HIT</td>
</tr>
<tr>
<td>No</td>
<td>MISS</td>
</tr>
<tr>
<td>Yes</td>
<td>FA</td>
</tr>
<tr>
<td>No</td>
<td>CR</td>
</tr>
</tbody>
</table>

Success rate (high is good)

SR = HIT / (HIT + FA)

Prob. of Detection (high is good)

POD = HIT / (HIT + MISS)

Threat Score (high is good)

TS = HIT / (HIT + MISS + FA)

Bias Ratio (1 is ideal)

BR = (HIT + FA) / (HIT + MISS)

Plot adapted from Roebber 2009
RI Validation: Results

2015 & 2016: All basins

- Results are binned by lead time
 - Tau = 0-24 h through 18-42 h (circle)
 - Tau = 24-48 h through 42-66 h (square)
 - Tau = 48-72 h through 66-90 h (diamond)
 - Tau = 72-96 h through 96-120 h (star)

- Observed rate of RI decreases with forecast lead time
- Forecast rate of RI < Observed rate of RI, especially for early lead times
- Success rate > probability of detection (more misses than false alarms)
- Success rate decreases with lead time
- POD highest for 3rd lead time bin
- Threat score highest for 2nd and 3rd lead time bins
RI Validation: Results

2015 & 2016: All basins

- Homogeneous comparison
- All models underpredict the RI rate at all lead times (~0.5x obs. rate)
- Success rate > probability of detection
- Model performance declines with lead time; for last lead time bin metrics are similar to those of random forecasts
- HWRF performs best for first two lead time bins, CTCX for last two lead time bins (based on threat score)
- Dynamical model performance does not approach HFIP goal, but is skillful for the first three lead time bins
2015 & 2016: WestPac

- Relative to EastPac and Atlantic, observed rate of RI is higher, and model forecast performance is better
- All models underpredict the RI rate at all lead times. HWRF is best at earliest lead time bin and COAMPS-TC at later lead time bins
- Success rate > probability of detection
- HWRF performs best for first two lead time bins, CTCX for last two lead time bins (based on threat score)
- Except for GFDN, dynamical models are skillful for the first three lead time bins

Note: WestPac accounts for roughly half the ‘All basins’ sample
RI Validation: Results

2015 & 2016: EastPac

- All models underpredict the RI rate at all lead times. Early lead times are particularly bad, especially for the GFS-based models.
- Success rate >> probability of detection
- COTC best performing model for earliest lead time bin
- COTC and CTCX best performing models at the later lead time bins
RI Validation: Results

Rapid Intensification: 24 h change in intensity >= 30 kt

11 TCs in sample with obs RI

CTCX
COTC
HWRF
GFDL

2016: EastPac
RI Validation: Results

2015: EastPac

- RI cases were apparently easier to predict in 2015 than in 2016. Maybe increased predictability from SST anomalies associated with El Niño?
- Beware of interpreting results for a single season/basin, or year-to-year changes in such results.
RI Validation: Results

2015 & 2016: Atlantic

- With fewer forecast cases and fewer observed RI events in 2015 and 2016 w.r.t. the other basins, undersampling is much bigger issue in Atlantic
- All models underpredict the RI rate at early lead times.
- HWRF and CTCX appear to have some skill, but reluctant to draw conclusions based on this sample
RI Validation: Results

Initial Vmax <= 40 kt

- Cases from 2015 & 2016, All basins
- Focus on results from first lead time bin (circles)
- HWRF has nearly the correct RI rate, COAMPS-TC forecast rate is far too low, especially CTCX
- HWRF has both POD and SR slightly above 0.3
RI Validation: Results

- **Cases from 2015 & 2016, All basins**
- **Focus on results from first lead time bin (circles)**
- Observed rate of RI is high relative to other categories of initial Vmax
- CTGX has higher success rate than HWRF, but lower POD and threat score
- Models all underestimate obs RI rate

45 kt <= I. Vmax <= 60 kt

- Cases from 2015 & 2016, All basins
- Focus on results from first lead time bin (circles)
- Observed rate of RI is high relative to other categories of initial Vmax
- Models all underestimate obs RI rate
- CTCX has higher success rate than HWRF, but lower POD and threat score
RI Validation: Results

65 kt \leq $V_{\text{max}} \leq$ 95 kt

- Cases from 2015 & 2016, All basins
- Focus on results from first lead time bin (circles)
- Models all underestimate obs RI rate
- Similar model performance; SR between 0.3 and 0.4, POD between 0.1 and 0.2
- HWRF performance worse than for TCs that are initial of TS & TD intensity
RI Validation: Conclusions

2015 & 2016: All basins

- Sample includes 62 TCs with observed RI, very active WestPac and EastPac
- Dynamical models underpredict (~0.5x) the observed rate of RI at all lead times
- Success rate > Probability of detection; miss more likely than false alarm
- Model performance varies according to TC initial intensity
- Dynamical models have skill for all but the latest lead times, relative to randomly predicting RI at the observed rate. However, performance is well short of HFIP goal.

2015 & 2016: Individual basins

- Performance is generally better in the Western Pacific than Eastern Pacific; Eastern Pacific has relatively low forecast rate of RI and low POD
- Atlantic has too few instances of RI to have a lot of confidence in results
Validation challenges

- RI is rare by definition; difficult to accumulate sample with many observed RI instances
- Multi-basin, multi-year approach is most likely to give meaningful results, but makes a retrospective test of two model versions very computationally expensive
- Atlantic is particularly troublesome; to get ~60 TCs with observed RI (as in 2015-2016 multi-basin sample), would have to run 2004-2016 seasons.

Prediction challenges

- Models need to forecast RI more often to increase probability of detection ... but this will be difficult without degrading success rate (i.e. more false alarms) and intensity mean absolute error
- All models struggle with 0-24 h RI rate for TCs with initial intensity > 40 kt. Why?
- Model performance is better in the Western Pacific than the Eastern Pacific (and Atlantic, perhaps). Why? Is it just that ΔVmax ≥ 30 kt in 24 h is more common in the Western Pacific?
In 2014, 2015, and 2016 NRL ran a real-time COAMPS-TC ensemble.

Forecast products displayed on NRL web page for:

- COAMPS-TC ensemble
- HWRF ensemble
- GFDL ensemble
- Multi-model combined ensemble

Here, we review products available in 2016 and discuss future directions.
TC ensemble forecast products

Basic track forecast display

COAMPS-TC
TC = 07L2016, DTG = 2016082600

COAMPS-TC / HWRF / GFDL
TC = 07L2016, DTG = 2016082600
TC ensemble forecast products

Basic intensity forecast display

COAMPS-TC

COAMPS-TC / HWRF / GFDL

Similar plots available for min SLP
TC ensemble forecast products

Track colored by forecast intensity

New for 2016
TC ensemble forecast products

10-m wind threshold exceedance probability

COAMPS-TC

TC = 07L2016, DTG = 2016082600, lt = 0 h, prob (%) 34–kt wind

COAMPS-TC / HWRF

TC = 07L2016, DTG = 2016082600, lt = 0 h, prob (%) 34–kt wind

Available for 34 kt, 50 kt, and 64 kt thresholds, with both animations as shown above and static images for tau = 120 h
Rapid intensification probability

COAMPS-TC

CTCXEPS: TC = 07L2016, DTG = 2016082600

COAMPS-TC / HWRF / GFDL

HWRFCCTXGFDLEPS: TC = 07L2016, DTG = 2016082600

Probability of $\Delta I \geq 65$ kt in 0 to 72 h = 0.09

Members which satisfy above criteria highlighted with bold line type

Available for $\Delta I \geq 30$ in 0 to 24 h, $\Delta I \geq 55$ in 0 to 48 h, and $\Delta I \geq 65$ in 0 to 72 h (as shown in example above)
COAMPS-TC

CCTXEPS: TC = 07L2016, DTG = 2016082600

24 h lead time window

Colored bars indicate 24 h intensity change probability

\(\Delta I \geq 30 \text{ kt (Rapid Intensification)} \)

\(10 \text{ kt} < \Delta I < 30 \text{ kt (Moderate Intensification)} \)

\(-10 \text{ kt} < \Delta I < 10 \text{ kt (Steady intensity)} \)

\(-30 \text{ kt} < \Delta I < -10 \text{ kt (Moderate Weakening)} \)

\(\Delta I < -30 \text{ kt (Rapid Weakening)} \)

TC already dissipated or dissipates during window

COAMPS-TC / HWRF / GFDL

HWRFCTCXGFDLEPS: TC = 07L2016, DTG = 2016082600

24 h lead time window

Colored bars indicate 24 h intensity change probability

\(\Delta I \geq 30 \text{ kt (Rapid Intensification)} \)

\(10 \text{ kt} < \Delta I < 30 \text{ kt (Moderate Intensification)} \)

\(-10 \text{ kt} < \Delta I < 10 \text{ kt (Steady intensity)} \)

\(-30 \text{ kt} < \Delta I < -10 \text{ kt (Moderate Weakening)} \)

\(\Delta I < -30 \text{ kt (Rapid Weakening)} \)

TC already dissipated or dissipates during window

New for 2016

TC ensemble forecast products
Deterministic prediction

- Under the assumption that the validating observation and ensemble forecast members are drawn from the same distribution, optimal deterministic forecast (for typical metrics like MAE, MSE) is central tendency of the ensemble.

- However, if observational information becomes available between the forecast initial time and time the ensemble forecast is completed, it could potentially be used to re-weight the ensemble members to generate an improved deterministic prediction.

Augmented deterministic prediction

- The COAMPS-TC ensemble can distinguish between low and high uncertainty cases, for both track and intensity.

- The ensemble could be used to support a qualitative forecast uncertainty designation (e.g. high/medium/low) accompanying a deterministic forecast, or a quantitative measure of forecasts uncertainty (e.g. 90% confidence interval).

Probabilistic prediction

- We plan to continue producing and validating probabilistic, ensemble-based forecast products.