Updates on 2018 HMON Ensemble real-time experiment

Weiguo Wang, Lin Zhu, Avichal Mehra
HMON ENSEMBLE

- HMON ENS, 1 + 10

- Real time parallel for one AL storm

- Probabilistic guidance and mean track/intensity forecasts

- Provide results for multi-model ensembles
HMON
Hurricanes in a Multi-scale Ocean coupled Non-hydrostatic model

One of NCEP operational hurricane forecast systems

- Dynamic core: NMMB
- Vortex initialization
- Moving nests
- Well-tuned Physics package
- Coupled to Ocean models (HYCOM)
HMON configuration

- Coupled to HYCOM
- BC and IC from GFS
- 42 levels
- Three domains, two nests
- D1: ~65° x 65°
- D2: ~ 12° x 12°
- D3: ~ 7° x 7°
Similar to 2018 operational deterministic HMON model:
- Less vertical levels (42 vs 51) to fit jet time window
- 10% larger domains than 2017 HMON_ENS

IC/BC Perturbations (large scale): 10 member GEFS/FV3GFS.

Random initial wind speed and position (TCVital) perturbations considering best track uncertainty

Multi-phys Options in members:
- Convection: BMJ, SAS, scale-aware SAS
- PBL: GFSPBL, EDMFPBL
- Land: GFDL, NOAH
- Microphys: Fer_hires, WSM6
- Surface layer: use different z0 and zt values (Cd,Ch)

~539 ujet nodes reserved.
Configurations for HMON ensemble members

<table>
<thead>
<tr>
<th>#</th>
<th>Domains</th>
<th>CU</th>
<th>PBL</th>
<th>Land</th>
<th>Cd,Ch</th>
<th>MP</th>
<th>Spec_adv</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>D1: 451x451</td>
<td>SAS</td>
<td>GFSPBL</td>
<td>NOAH</td>
<td>ICOEF=10</td>
<td>Fer_hires</td>
<td>No</td>
</tr>
<tr>
<td>01</td>
<td>Scale_SAS</td>
<td>GFSPBL</td>
<td>NOAH</td>
<td>ICOEF=10</td>
<td>Fer_hires</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>D2: 231x201</td>
<td>BMJ</td>
<td>GFSPBL</td>
<td>NOAH</td>
<td>ICOEF=10</td>
<td>Fer_hires</td>
<td>No</td>
</tr>
<tr>
<td>03</td>
<td>D3: 381x345</td>
<td>BMJ</td>
<td>GFSPBL</td>
<td>GFDL</td>
<td>ICOEF=10</td>
<td>Fer_hires</td>
<td>Yes</td>
</tr>
<tr>
<td>04</td>
<td>N=42</td>
<td>SAS</td>
<td>GFSPBL</td>
<td>NOAH</td>
<td>ICOEF=10</td>
<td>WSM6</td>
<td>No</td>
</tr>
<tr>
<td>05</td>
<td>18 Km 6 Km 2 Km</td>
<td>BMJ</td>
<td>EDMF</td>
<td>NOAH</td>
<td>ICOEF=10</td>
<td>Fer_hires</td>
<td>No</td>
</tr>
<tr>
<td>06</td>
<td>Scale_SAS</td>
<td>EDMF</td>
<td>GFDL</td>
<td>ICOEF=10</td>
<td>Fer_hires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>BMJ</td>
<td>EDMF</td>
<td>NOAH</td>
<td>ICOEF=10</td>
<td>WSM6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Scale_SAS</td>
<td>EDMF</td>
<td>NOAH</td>
<td>ICOEF=10</td>
<td>Fer_hires</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Scale_SAS</td>
<td>GFSPBL</td>
<td>NOAH</td>
<td>ICOEF=6</td>
<td>Fer_hires</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SAS</td>
<td>GFSPBL</td>
<td>NOAH</td>
<td>ICOEF=10</td>
<td>Fer_hires</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

use FV3GFS for IC and BC