Developmental Testbed Center: Core support activities & HWRF testing and evaluation

Kathryn Newman & Evan Kalina
DTC team: Mrinal Biswas, Evelyn Grell, Jim Frimel, Laurie Carson

Acknowledgements:
M. Iacono & J. Henderson (AER), G. Grell (NOAA/ESRL/GSD),
NOAA/EMC Hurricane Team, NOAA/AOML/HRD

HFIP telecon: 2018 September 5
Part I: Core support & R2O activities

Kathryn Newman
NCAR/RAL
What is the DTC?

- **Collaboration between NOAA/ESRL and NCAR**
- **Purpose**: Facilitate the interaction and transition of NWP technology between research & operations
 - **O2R**: Support operational NWP systems to the community
 - **R2O**:
 - Partner with developers to get innovations into centralized code
 - Perform diagnostics on and test and evaluate promising NWP innovations for possible operational implementation
- **Interaction between R & O**: Workshops, visitor program, newsletter

DTC is jointly sponsored by NOAA, Air Force, NSF, and NCAR
DTC strategies to promote HWRF O2R2O

1. **Code management**
 - Create and sustain a framework for NCEP and the research community to collaborate and keep HWRF code unified

2. **User and developer support**
 - Support the community in using and providing improvements for HWRF

3. **Visitor program**
 - Funds the research community to partner with DTC in R2O

4. **Independent testing & evaluation**
 - Test and evaluate innovations for potential operational implementation

Provides tools/infrastructure, support and opportunities for developers to transition research innovations into operations
Code management

- **Centralized HWRF repository**
 - SVN & Git repositories house all HWRF components
 - Automated build for entire system, end-to-end python scripts, tools for automation (Rocoto workflow manager), source for components
 - Maintain integrity of code, supports integration of code into trunk
 - Ensures developers have access to the latest code developments
 - Unified scripts are fully supported by DTC

Need repository access? DTC arranges access to repositories for all HWRF components
User & developer support

Single helpdesk: hwrf-help@ucar.edu

- Users work with stable yearly release with known capabilities
 - Code downloads, datasets, extensive documentation, online tutorial
 - HWRFv4.0 (consistent with 2018 operational HWRF) release underway … target end of Sept

- Developers work with latest experimental code in repository
 - Primary goal to facilitate R2O

www.dtccenter.org/HurrWRF/users
www.dtccenter.org/HurrWRF/developers
HWRF developers website

Welcome to the DTC HWRF developers page. The source for information concerning the developmental code for HWRF.

Most HWRF users should obtain the HWRF code through the official releases available from the Community HWRF users website. The official code releases contain stable, well-tested and documented code. Datasets, tutorials, test cases, and a help desk are available for the official releases from the Community HWRF users website. Each official code release matches the operational configuration of that year.

This website provides an overview of the HWRF Code Repository, how to request repository access, information about code management and how to contribute code back to HWRF, details on how to check out, build and update your code, and information on forecast skill. To start, navigate to the tab on the left entitled Getting Started, and select Obtaining Repository Access. If you have already been granted repository access, skip to the next tab entitled Repository Structure.

http://www.dtcenter.org/HurrWRF/developers
HWRF contrib repository

A repository serving as a hub for developers to exchange peer-supported code

Available utilities

- **WBDump** - Provides a mechanism to dump a WRF binary file. [Download here.](http://www.dtcenter.org/HurrWRF/developers)
- **WBPPlot** - Plots a single variable or the difference between two variables contained in a WRF binary file. [Download here.](http://www.dtcenter.org/HurrWRF/developers)
- **POMTC_matlab** - Matlab scripts for plotting POM-TC output [Download here.](http://www.dtcenter.org/HurrWRF/developers)
- **HYCOM-HWRF** - Matlab scripts for plotting HYCOM-HWRF output [Download here.](http://www.dtcenter.org/HurrWRF/developers)
- **Sat_verif** - Scripts for GOES satellite verification [Download here.](http://www.dtcenter.org/HurrWRF/developers)

Developers share code related to HWRF (verification, obs processing, etc.), DTC distributes it to the community, Developers maintain and provide as much/little support as they wish

http://www.dtcenter.org/HurrWRF/developers
Communication

• HWRF Developers Committee
 • Membership: 2 from DTC, 2 from EMC
 • All developers welcome to biweekly meetings
 • Forum for discussion, plans, and updates for development, including testing, evaluation, and technical aspects
• Mailing list for exchanging information about development, announcements
 • hwrf_developers@rap.ucar.edu
 • All those with HWRF repository access are members
DTC Visitor Program

- Supports visitors to work w/ the DTC to test new forecasting & verification techniques, models & model components for NWP
 - PI project – up to 2 months support
 - Graduate student project - up to 1 year
- Announcement of opportunity: https://dtcenter.org/visitor-program/announcement-opportunity
- Contact knewman@ucar.edu, Evan.Kalina@noaa.gov - or other DTC staff member for more information!

https://dtcenter.org/visitors
Accepting proposals now!
DTC Visitor Program – Recent hurricane-related work

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Project Description</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dev Niyogi & Subashini Subramanian</td>
<td>Purdue Univ</td>
<td>Developing Landfall Capability in Idealized HWRF for Assessing the Impact of Land Surface on Tropical Cyclone Evolution (2016)</td>
<td></td>
</tr>
<tr>
<td>Shaowu Bao</td>
<td>Coastal Carolina Univ</td>
<td>Evaluation of the microphysics scheme in HWRF 2016 version with remote-sensing data (2016)</td>
<td></td>
</tr>
<tr>
<td>Ting-Chi Wu</td>
<td>Colorado State Univ</td>
<td>Evaluation of the Newly Developed Observation Operators for Assimilating Satellite Cloud Precipitation Observations in GSI within HWRF system (2017)</td>
<td></td>
</tr>
<tr>
<td>Jun Zhang</td>
<td>U. Miami and HRD</td>
<td>Evaluating the Impact of Model Physics on HWRF Forecasts of Tropical Cyclone Rapid Intensification (2017)</td>
<td></td>
</tr>
</tbody>
</table>

Research funded via DTC visitor program successfully contributing to HWRF development, HFIP goals.
T&E: Alternate Cloud Overlap methodology

M. Iacono, J. Henderson (AER)

- Examined the effect of replacing the default maximum-random (MR) cloud overlap assumption with an exponential cloud overlap method within the RRTMG
- Tested during pre-implementation period – accepted for 2018 operational HWRF
- Follow-up project implementing exponential-random cloud overlap underway
T&E: Grell-Freitas cumulus

Storms:
Fred, Fiona,
Hermine,
Harvey, Irma,
Kate, Jose,
Nicole, Maria,
Nate, Ophelia

Degradation in track forecasts for GF configuration at longest lead times
Neutral intensity errors differences between the GF and SASAS
Negative intensity bias present in both configurations
Summary

- DTC facilities access to HWRF code for users and developers
- Resources, websites, and documentation are available
- Critical for developers to follow code management best practices to make code available for operational testing
- DTC can be a resource for testing potential developments before operational implementation

- We are here to help! Please contact us if you would like more information on the development process
Part II: HWRF model evaluation using Coyote UAS and Dropsonde data

Evan Kalina
CIRES at NOAA/ESRL/GSD
Outline

- Why are UAS data from hurricanes useful for model evaluation?
- How can these data be used effectively?
- Do the data agree with conventional observations (e.g., dropsondes)?
- Are model biases present in boundary layer temperature and moisture fields in the Hurricane Weather Research and Forecast system (HWRF)?
- Are these biases sensitive to the cumulus parameterization?
Boundary layer processes are complex and nonlinear

Must have data on all of these boundary layer processes (and more) to evaluate/improve model parameterizations

Heat, moisture, momentum fluxes to sustain storm (Emanuel 1986)
During CBLAST, the NOAA P-3 collected BL measurements

The Coupled Boundary Layer Air-Sea Transfer (CBLAST) experiment (French et al. 2007)

- P-3 flew as low as 70 m in 2 storms
- 18-30 m s\(^{-1}\) wind speeds
- Underscored need for additional data
Today, the NOAA P-3 flies at 3 km. How do we obtain additional BL measurements?

- **NOAA P-3**
 - Measures p, T, SST, RH, winds
 - Power spectrum
 - Eddy dissipation
 - Fluxes

- **Dropsonde:**
 - (10-20 per mission)
 - Snapshot at any one height

- **Coyote UAS**
 - Cione et al. (2016)

Model
Coyote UAS: Fast facts

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>0.91 m length, 1.47 m wingspan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>6 kg</td>
</tr>
<tr>
<td>Sensors</td>
<td>p, T, RH, winds (from GPS); all 1-3 Hz</td>
</tr>
<tr>
<td>Delivery</td>
<td>Air-deployable thru P-3 sonobuoy chute</td>
</tr>
<tr>
<td>Control</td>
<td>Piccolo autopilot; commands issued from P-3</td>
</tr>
</tbody>
</table>
A Coyote UAS flight on 23 September 2017 sampled the eyewall of Hurricane Maria (100 kt, 952 mb)

Image credit: George Bryan
Compare UAS data to two HWRF configurations: H18C and H18G

- **Baseline**
 - HWRF with SASAS (H18C)
 - HWRF with GF (H18G)

<table>
<thead>
<tr>
<th>Component</th>
<th>HWRF with SASAS (H18C)</th>
<th>HWRF with GF (H18G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulus</td>
<td>Scale Aware SAS</td>
<td>GF</td>
</tr>
<tr>
<td>Microphysics</td>
<td>Ferrier-Aligo</td>
<td>Ferrier-Aligo</td>
</tr>
<tr>
<td>Surface layer</td>
<td>HWRF</td>
<td>HWRF</td>
</tr>
<tr>
<td>Land surface</td>
<td>Noah LSM</td>
<td>Noah LSM</td>
</tr>
<tr>
<td>PBL</td>
<td>GFS Hybrid EDMF</td>
<td>GFS Hybrid EDMF</td>
</tr>
<tr>
<td>Radiation</td>
<td>RRTMG</td>
<td>RRTMG</td>
</tr>
</tbody>
</table>

- **Experimental**
- Horizontal grid spacing: 18, 6, 2 km
- Inner nests move to follow storm
- Domain location varies from run to run depending on storm location
- 75 vertical levels; top at 10 hPa

H18G considered by EMC for operational implementation this year
A Coyote was “flown” around the eyewall within the HWRF inner nest for a series of forecast cycles. Each cycle was evaluated at the valid time of the Coyote flight (~18 UTC).
At the initial time, cool bias of 1.5–2°C in both configurations.
At forecast hour 72, the cool bias is reduced in H18G by ~1°C.
At the initial time, dry bias of 1.5–2 °C in both configurations.
At forecast hour 72, the dry bias is still present in H18C, but not in H18G.
H18G improvements are uneven across forecast cycles

Some reduction in bias in GF at days 3 and 4

Each point is a different model cycle’s forecast, valid at the time of the Coyote flight (i.e., 18 UTC 23 September 2017).
Small changes in the radial location of the simulated Coyote flight do not change results.

Air temperature Initialization

Dewpoint temperature Initialization

![Graphs showing forecasted vs observed temperature distributions for different radial locations.](image-url)
Dropsondes confirm 1–2°C cool, dry bias in eyewall
Conclusions

- Why are UAS data from hurricanes useful for model evaluation?
 - Accurate data collected at altitudes unsafe for crewed aircraft
- How can these data be used effectively?
 - Map obs to R/RMW space and compare to model
 - Consider sensitivity to simulated flight trajectory
- Do the data agree with conventional observations (e.g., dropsondes)?
 - Yes, dropsondes and Coyote UAS data are qualitatively similar
- Are model biases present in boundary layer temperature/moisture fields in HWRF?
 - Yes, 1–2°C cool, dry bias suggested by both Coyote and dropsondes
- Are these biases sensitive to the cumulus parameterization?
 - While running HWRF with the Grell-Freitas cumulus scheme lessens the bias at 3–4 day lead time, bias remains for other forecast cycles
Thank you!

- Questions?
 knewman@ucar.edu
 Evan.Kalina@noaa.gov

Resources:
 http://www.dtcenter.org/HurrWRF/users
 http://www.dtcenter.org/HurrWRF/developers
 http://www.dtcenter.org/visitors
 hwrf-help@ucar.edu