Impact of Assimilating Aircraft Reconnaissance Observations in Operational HWRF

Mingjing Tong, Vijay Tallapragada, Emily Liu, Weiguo Wang, Chanh Kieu, Qingfu Liu and Banglin Zhan

Environmental Modeling Center, NOAA/NWS/NCEP, NCWCP, College Park, MD

2014 HFIP annual meeting
2013 HWRF Data Assimilation Configuration

- Data assimilation performed on outer domain. When inner-core (aircraft reconnaissance) observations are available, data assimilation also performed on ghost d03 after vortex initialization.

- GSI hybrid analysis using global 80 EnKF ensemble member at T254L64.

- First guess
 - TC environment cold start from GDAS forecast
 - TC vortex cycled from HWRF forecast relocated, size and intensity corrected through vortex initialization
 - First Guess at Appropriate Time (FGAT)

- Observational data
 - outer domain: conventional data
 - ghost d03: conventional data and inner-core data
Five Year Aircraft Reconnaissance Data Assimilation Experiments

• **Control experiment (HWCT):**
 – Data assimilation on outer domain, *no inner core data assimilation*
 – Initial vortex relocated and adjusted through *vortex initialization*
 – Conventional data: Radiosondes, Dropsondes, Aircraft reports, Surface ship and buoy observations, Surface observations over land, Pibal winds, Wind profilers, VAD wind, WindSat, ASCAT scatterometer winds, GPS-derived integrated precipitable water
 – Dropsonde wind within radius=\text{max}(111\text{km}, 3\times\text{RMW}) are flagged (not assimilated). Dropsonde surface pressure in the inner-core are flagged.

• **TDR DA experiment (HWDR):**
 – HWCT + assimilation of TDR data (in bufr format or superobs if bufr data are not available)

• **RECON DA experiment (HWRC):**
 – HWCT + assimilation of HDOB (*flight-level data* and SFMR derived *surface wind speed*)

• **TDR+RECON experiment (HWAR):**
 – HWCT+ assimilation all reconnaissance observations
Data Inventory for RDITT Experiments 2008-2012 Atlantic

<table>
<thead>
<tr>
<th>Year</th>
<th>Storm#</th>
<th>Name</th>
<th>HDOB</th>
<th>TDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>2</td>
<td>Bertha</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Cristobal</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Dolly</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Edouard</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Fay</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Gustav</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Hanna</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Ike</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Kyle</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Omar</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Paloma</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>total</td>
<td>11</td>
<td></td>
<td>172</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Storm#</th>
<th>Name</th>
<th>HDOB</th>
<th>TDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>3</td>
<td>Bill</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Danny</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Erika</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Ida</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>4</td>
<td></td>
<td>53</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Storm#</th>
<th>Name</th>
<th>HDOB</th>
<th>TDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>7</td>
<td>Earl</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Fiona</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Igor</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Karl</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Matthew</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>5</td>
<td></td>
<td>64</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Storm#</th>
<th>Name</th>
<th>HDOB</th>
<th>TDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>1</td>
<td>Arlene</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>bret</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Don</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Emily</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Gert</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Harvey</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Irene</td>
<td>29</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Lee</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Maria</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Nate</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Ophelia</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Rina</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>total</td>
<td>11</td>
<td></td>
<td>122</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Storm#</th>
<th>Name</th>
<th>HDOB</th>
<th>TDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>2</td>
<td>Beryl</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Debby</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Ernesto</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Isaac</td>
<td>31</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Leslie</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Rafael</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Sandy</td>
<td>26</td>
<td>8</td>
</tr>
<tr>
<td>total</td>
<td>7</td>
<td></td>
<td>117</td>
<td>22</td>
</tr>
</tbody>
</table>

Total number of storms: 39

HDOB: 528

TDR: 84
Five year aircraft reconnaissance data impact study –

TDR data

Category <= TS

Category = H1-2

Category = HM
Five year aircraft reconnaissance data impact study – HDOB data (flight level and SFMR)

Category <= TS

Category = H1-2

Category = HM
Five year aircraft reconnaissance data impact study – all reconnaissance data.

Track, Intensity, Bias graphs for Category <= TS, Category = H1-2, Category = HM.
Inner-core data assimilation with TDR data assimilated
Earl 07I 2010083012

HWMF: Hurricane WRF (2013 Operational Version)
2010 Tropical Cyclones Intensities
Storm: AL0710 (EARL)

Forecast: Beginning 2010083000 for HWMF model
Observed: Beginning 2010083000, every 12 hours

rw between 800 and 700hPa rw O-F between 800 and 700hPa

first guess wind field at 850hPa analysis wind field at 850hPa TDR Wind analysis 1500 m

HWMF, Earl stormid: 402, date: 2010083012
rw: Min=49.8 m/s, Max=65.5 m/s
HWMF, Earl stormid: 402, date: 2010083012
rw O-F: Min=19.60072 m/s, Max=19.65881 m/s
HWMF, Earl stormid: 402, date: 2010083012
first guess wind: Min=5.46375 m/s, Max=15.32175 m/s
HWMF, Earl stormid: 402, date: 2010083012
analysis wind: Min=9.36477 m/s, Max=128.8516 m/s
HWMF, Earl stormid: 402, date: 2010083012
TDR wind analysis (shaded): Min=17.6924 m/s, Max=119.03 m/s
Inner-core data assimilation with TDR data assimilated
Earl 07I 2010083012 – analysis increment
Both RECON and TDR data suggest that the first guess has too strong wind speed in the inner-core (after vortex initialization).
Inner-core data assimilation with RECON data assimilated
Earl 07I 2010083100
RECON DA experiment
Earl 07I 2010083100

6-h forecast
before vortex initialization

after vortex initialization

limited data coverage
The large difference between the background vortex and reconnaissance observations in the inner-core is commonly found in all strong storms with forecast spin-down (e.g. Gustav 2008, Paloma 2008, Bill 2009, Earl 2010, Rina 2011 etc.)
Five year aircraft reconnaissance data impact study – mean 34 kts, 50 kts and 60 kts wind radii error

Category <= TS

Category =H1-2

Category =HM

34 kts

50 kts

64 kts

TDR

RECON

RECON + TDR
Conclusion

• Assimilation of TDR data can help improve both track forecast and intensity forecast for weak storms. The degradation of the short-term intensity forecast is mostly associated with the 6-h forecast spin-down of the major hurricanes.

• Assimilation of RECON (flight level, SFMR and dropsonde) data has positive impact on TC track forecast. The degradation of the intensity forecast is also associated with forecast spin-down, which generally happens to TCs of all different categories, but is more severe for stronger storms.

• For the 84 cases with TDR data available, assimilation of RECON data also improves the track and intensity forecast for weak storms.

• Assimilation of all the reconnaissance observations including TDR data produces similar track and intensity forecast compared with the experiment assimilating RECON data.
Assimilation of reconnaissance observation in operational HWRF – Issues

Two major issues

- Initial intensity couldn't match best track. Averaged initial Vmax error is more than 10 kts for strong storms. Initial intensities of the storms are underestimated.
- Short-term forecast spin-down, especially for strong storms.

Two types of initialization combined together – vortex initialization followed by data assimilation

- **Vortex initialization**
 - *Advantages:*
 - Can closely match initial intensity to best track (Vmax and Pmin)
 - Vortex is better balanced – better short-term intensity forecast (strong storms)
Assimilation of reconnaissance observation in operational HWRF – Issues

- Two types of initialization combined together – **vortex initialization followed by data assimilation** (continued)
 - **Vortex initialization**
 - *Disadvantages*: Size and intensity correction according to a few parameters in tcvitals – has a lot of uncertainties in TC 3D structures.
 - Has limited control on TC middle to upper level structures: more likely to have deeper and stronger upper level structures; tends to over predict the intensity of storms ranging from tropical depression to Category 2 hurricanes.
 - Can match maximum wind speed, but has limited control on wind speed gradient along radial direction - easily introduce a ‘fat and strong’ inner-core structure for strong storms.
 - **Data assimilation**
 - *Advantages*: can provide more accurate TC structures, especially when data coverage is good – help prevent weak storms from over intensification.
Assimilation of reconnaissance observation in operational HWRF – Issues (continued)

• Data assimilation
 • Deficiency:
 – Deficiency in background error covariance (e.g. global ensemble – low resolution)
 – lack of balance (moisture-mass-wind) constraint in analysis
 – lack of cloud and precipitation analysis
 – Observations with sufficient coverage and resolution in vortex area are not consistently available
 – Observations are not optimally used

• Two initialization procedures compete with each other
 – First guess TC structure (after vortex initialization) often substantially different from reconnaissance observations – due to model bias combined with artificial structures introduced by vortex initialization enhanced through cycling
 – Large analysis increment and easily out of balance

❖ Model deficiency: can model support the observed storm structure (e.g. small RMW)?
Data Assimilation for HWRF – Plans

❖ **Improve background error covariance**
 • Data assimilation system upgrade – self-consistent GSI-based hybrid data assimilation system that use higher resolution HWRF based ensemble covariance
 • Potentially use warm-start HWRF ensemble initialized from GFS EnKF analysis in GSI hybrid analysis for TDR data assimilation in 2015
 • carefully tuning ensemble spread and improve error variance in static B

❖ **Further enhance balance – remove large-amplitude, high-frequency oscillations resulting from imbalance in analysis**
 - Incremental Analysis Updates (IAU); Digital filter; Tangent Linear Normal Mode Constraint (TLNMC) with moist physics

❖ **Improve the use of observations (TDR, flight-level data, SFMR, dropsonde, satellite wind and radiance)**
 - quality control (e.g. flight level, SFMR); observation error tuning (based on innovation stats);
 - improve observation operator (e.g. add w in observation operator of TDR data) and data thinning
 - develop the capability of assimilating and/or evaluate the impact of new observations:
 cloudy radiance, hourly AMVs, G-IV TDR; GH dropsonde and radar data ...

❖ **Further evaluate the role of vortex initialization; investigate the possibility of realizing the functions of vortex initialization through advanced data assimilation**
Assimilation of Global Hawk (HS3) dropsondes

<table>
<thead>
<tr>
<th>EXP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWRF</td>
<td>2014 operational HWRF: Conventional data, satellite radiance, satellite wind, GPS RO, TDR (if available)</td>
</tr>
<tr>
<td>HS14</td>
<td>HWRF + assimilate GH dropsondes</td>
</tr>
</tbody>
</table>

- **Observation errors:**
 - Temperature, moisture, and wind errors are assigned as a function of vertical pressure

- **Potential issues with GH dropsondes assimilation:**
 - When available, data has good temporal and spatial coverage; however, data is not available for every cycle
 - Dropsonde drift problem: the GPS measured geo-locations at each pressure level are not included in PREPBUFR
• Storms with GH dropsondes (2014)
 Cristobal 04L: 2014082600 - 2014082912
 Dolly 05L: 2014090112 - 2014090306
 Edouard 06L: 201491106 – 2014091812