DATA ASSIMILATION UPGRADES FOR HWRF (with application to HAFS)

Jason Sippel1 and Henry Winterbottom2
05 November 2019

1NOAA AOML/HRD
2I. M. Systems Group, Inc. (IMSG) and NOAA/NWS NCEP EMC
Outline:

1. Summary of 2019 upgrades
2. Summary of 2020 developments
3. Long-term outlook
4. Conclusions
2019 Upgrades: Inner-core increments

- H219: For hurricanes, only the wavenumber 0 and 1 inner-core increments are retained
- Flexibility in specifying which increments to keep (H220)
- Inner-core observations are now more impactful on the TC initial structure and subsequent forecasts
- Forecasts improve
2019 Upgrades: Inner-core increments

- **H219**: For *hurricanes*, only the wavenumber 0 and 1 inner-core increments are retained
- Flexibility in specifying which increments to keep (H220)
- Inner-core observations are now more impactful on the TC initial structure and subsequent forecasts
- Forecasts improve
2019 Upgrades: Dynamic observation errors

- GSI does not support and adequate range of specified observation errors
- JTTI-supported work developed GSI code to assign more appropriate errors for dropsondes and HDOB
- Results show benefits for intensity
- Neutral track impact
2019 Upgrades: Dynamic observation errors

- GSI does not support and adequate range of specified observation errors
- JTTI-supported work developed GSI code to assign more appropriate errors for dropsondes and HDOB
- Results show benefits for intensity
- Neutral track impact
Outline:

1. Summary of 2019 upgrades
2. Summary of 2020 developments
3. Long-term outlook
4. Conclusions
2020 Upgrade Tests: Increment tuning

- 2019: WN0+1 for hurricanes, all increments for TS

- Proposed 2020:
 - All increments below 50 kt
 - WN0+1 for 50-63 kt
 - WN0 for 64 kt +

- Improvements for track and intensity
2020 Upgrade Tests: Combined tests

- Tested combined impact of:
 - Increment tuning
 - Adding ASCAT data
 - GSI bug fixes
 - Merge bug fix
 - Other non-DA bug fixes

- Large positive impacts for Irma, Maria, Florence, and Michael

Combined impact on track/intensity skill

- Intensity skill
- Track skill
2020 Upgrade Tests: 88-D Vr

- HWRF currently does not assimilate 88-D data
- Several recent land-falling events (right) may have benefitted from this data
- The impacts from WSR-88D Vr superobs (NAM datastream) being tested
- Neutral to slightly positive results so far (not optimized) for Irma, Michael, Florence

Matthew - 2016
Irma - 2017
Gordon - 2018
Harvey - 2017
2020 Upgrade Tests: 88-D Vr

- HWRF currently does not assimilate 88-D data
- Several recent land-falling events (right) may have benefitted from this data
- The impacts from WSR-88D Vr superobs (NAM datastream) being tested
- Neutral to slightly positive results so far (not optimized) for Irma, Michael, Florence
2020 Upgrade Tests: Vortex relocation

- Problems with current vortex relocation and modification package:
 - Large adjustments during first 12h
 - Large bias in inner-core wind radii

- Possible alternatives:
 - Modifications to existing VR/VM package
 - GSI-based relocation

Example sampling data points in proposed GSI relocation strategy
Outline:

1. Summary of 2019 upgrades
2. Summary of 2020 developments
3. Long-term outlook
4. Conclusions
Long term: Improving inner-core covariance

- Current 6-hour window with 3D-EnVAR susceptible to imbalance

- DTC has workflow with flexible (e.g., 1-3 h) HWRF cycling intervals, which could improve forecasts

- Alternatively, 4D-EnVAR could also improve balance

Courtesy Xuguang Wang, HFIP partner

High-frequency full cycling alleviates imbalance.
Long term: Cycling whole model state

- The operational HWRF does not cycle condensate or vertical motion
- Studies have demonstrated an unphysical evolution of the TC if these are mishandled
- This also allows more effective satellite and radar data assimilation
- HFIP-funded partners are working on this

Shading: Temperature (K); Magenta: CWM 1.0 g/kg; Red: w +0.5 m/s; Blue: w -0.5 m/s

Wu et al., [2017]: When condensate is initialized without vertical motion, evaporation cooling and precipitation settling cause unphysical adjustments.
Long term: Atmospheric Motion Vectors

- NESDIS AMV processing is currently geared toward the global model.
- Recent studies have shown that mesoscale AMV assimilation improves HWRF forecasts.
- Velden et al., are working with NESDIS for operational mesoscale-AMV processing.
- Other HFIP-funded research ongoing to assimilate GOES-R SWIR, CAWV, and VIS AMV observations.

Maximum wind-speed forecast errors when assimilating mesoscale (blue) and currently processed (red) AMVs processing for TCs Gonzalo, Edouard, and Sandy [Velden et al., 2017].
Long term: Satellite Radiances

- HWRF makes deficient use of satellite radiances (both cloudy and clear)
- Transition to basin-scale HWRF would allow us to generate our own BC coefficients
- Cycling of model state would allow us to use cloudy-radiance data

Satellite bias correction coefficients computed using a cycled large, static domain in HWRF vs. GDAS bias correction coefficients during the 2017 NATL and EPAC hurricane seasons.
Conclusions:

• The HWRF/HAFS data assimilation system is rapidly advancing and contributing to lower forecast errors

• Potentially major changes in the near future as we add new observation types and improve upon existing methods

• HFIP is improving and expediting research to operations

• Some advances (HWRF satellite bias-correction, frequent cycling, etc.) will require significant computational resources

• Ongoing development is mindful of HAFS and methodologies will be transferred to FV3-based HAFS as needed